Error-estimation-guided rebuilding of de novo models increases the success rate of ab initio phasing.

نویسندگان

  • Rojan Shrestha
  • David Simoncini
  • Kam Y J Zhang
چکیده

Recent advancements in computational methods for protein-structure prediction have made it possible to generate the high-quality de novo models required for ab initio phasing of crystallographic diffraction data using molecular replacement. Despite those encouraging achievements in ab initio phasing using de novo models, its success is limited only to those targets for which high-quality de novo models can be generated. In order to increase the scope of targets to which ab initio phasing with de novo models can be successfully applied, it is necessary to reduce the errors in the de novo models that are used as templates for molecular replacement. Here, an approach is introduced that can identify and rebuild the residues with larger errors, which subsequently reduces the overall C(α) root-mean-square deviation (CA-RMSD) from the native protein structure. The error in a predicted model is estimated from the average pairwise geometric distance per residue computed among selected lowest energy coarse-grained models. This score is subsequently employed to guide a rebuilding process that focuses on more error-prone residues in the coarse-grained models. This rebuilding methodology has been tested on ten protein targets that were unsuccessful using previous methods. The average CA-RMSD of the coarse-grained models was improved from 4.93 to 4.06 Å. For those models with CA-RMSD less than 3.0 Å, the average CA-RMSD was improved from 3.38 to 2.60 Å. These rebuilt coarse-grained models were then converted into all-atom models and refined to produce improved de novo models for molecular replacement. Seven diffraction data sets were successfully phased using rebuilt de novo models, indicating the improved quality of these rebuilt de novo models and the effectiveness of the rebuilding process. Software implementing this method, called MORPHEUS, can be downloaded from http://www.riken.jp/zhangiru/software.html.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMPLE: a cluster-and-truncate approach to solve the crystal structures of small proteins using rapidly computed ab initio models.

Protein ab initio models predicted from sequence data alone can enable the elucidation of crystal structures by molecular replacement. However, the calculation of such ab initio models is typically computationally expensive. Here, a computational pipeline based on the clustering and truncation of cheaply obtained ab initio models for the preparation of structure ensembles is described. Clusteri...

متن کامل

Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds

For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is no...

متن کامل

Theoretical study of intermolecular potential energy and second virial coefficient in the mixtures of CH4 and H2CO gases

To get a mole of a gas, it is necessary to calculate the intermolecular interaction. Theseintermolecular interactions can be depicted by drawing the potential energy of a pair molecule inrelation to the distance. The intermolecular potential energy surface in the mixtures of CH4-H2COgases from ab initio calculations has been explored. In ab initio calculations the basis setsuperposition error (...

متن کامل

Routine phasing of coiled-coil protein crystal structures with AMPLE

Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existen...

متن کامل

Ab Initio Study of Vinblastine-Tubulin Anticancer Complex

Vinblastine is an important anticancer agent known to diminish microtubule assembly. Ab initio calculations are applied to examine the structural properties and different energies of vinblastine-tubulin complex in different dielectric constants and temperatures. The aims of this work are discovery the best optimized structure and thermodynamic properties of vinblastine-tubulin complex ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta crystallographica. Section D, Biological crystallography

دوره 68 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2012